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For the quantum mechanical Ising model in a strong transverse field we show 
that the convergence of the ground-state energy per site as the volume goes to 
infinity has an Ornstein-Zernicke behavior. That is, if the diameter of the 
d-dimensional lattice is given by L, the absolute value of the difference of the 
ground-state energy per site and its limit is asymptotically exp(-~L)L a/2 for 
some positive constant ~. We also show that the correlation function has the 
same behavior. Our results are derived by cluster expansions, using a method of 
Bricmont and Fr6hlich which we extend to the quantum mechanical case. 

KEY WORDS: Quantum mechanical spin systems; polymer expansions; 
finite-volume energy. 

1, I N T R O D U C T I O N  

The model  considered in this paper  is the Ising model  in a strong trans- 
verse field on a d-dimensional  cubic lattice. The main  result concerns the 
convergence of the f ini te-volume ground-s ta te  energy per site to its infinite- 
volume limit. The new result which we prove here is a s ta tement  about  the 

rate of convergence- -namely ,  that the convergence is exponent ial  with a 
specific power-law correction, e - ~ L / L  d/z, where L is the "diameter" of the 

lattice and  ~ > 0. Al though the model  treated in this paper  is well under-  

stood, as this result is the first r igorous proof  of the Orns te in -Zern icke  law 
regarding the f ini te-volume energy, the result may yet be useful for numeri -  
cal studies of the correlat ion length of this model  because the numerics  are 
usually limited to rather  small lattice sizes. Whether  the method may be 
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extended to other less well-known models is an open question. After getting 
the result on the convergence of the ground-state energy it will also be 
shown that the same asymptotic behavior is true for the space correlation 
functions. That  is, the correlation function (a~rt%) (where ej is one of the 
unit axes in the lattice and 1 is an integer) is asymptotically equal to 
e-r  a/2 for the same value of ~ as above. The Ornstein-Zernicke decay of 
the correlation functions for this model was found earlier by Kennedy. (4) 

The results are obtained by a series of cluster expansions of the free 
energy per site at finite volume and finite /~ (where /~ is the inverse tem- 
perature), the first of which is standard, and the second being an applica- 
tion of a method developed by Bricmont and Fr6hlich (1) for classical 
systems to the quantum mechanical system. The first expansion uses the 
standard method of writing a quantum mechanical spin system as a classi- 
cal system in one higher dimension, as first rigorously done in ref. 3. The 
techniques of Bricmont and Fr6hlich are used on the results of the first 
expansion by rewriting the first expansion as a gas of one-dimensional  inter- 
acting rods. The quantity of interest in this paper is the difference of the 
free energy per site in finite volume and the infinite-volume limit of the 
free energy per site. To find the ground-state energy, we take the zero- 
temperature limit of the expansion of the free energy. The infinite-volume 
limit follows the zero-temperature limit. This method yields a result for the 
given difference whose asymptotic behavior can be extracted by standard 
methods. 

2. M A I N  RESULTS 

2.1. S ta tement  of the Theorem 

In this paper we will consider the Ising model in a strong transverse 
field. We define the model by giving the Hamiltonian of our system as well 
as the Hilbert space on which the Hamiltonian acts. The Hilbert space is 
the tensor product space of IAI copies of C 2, and the Hamiltonian acting 
on this Hilbert space is 

HA = --e ~ a~a}+~(cr~+ 1) (1) 
( 8 )  i 

where the sum is over nearest-neighbor pairs of sites (0") on the lattice A 
with periodic boundary conditions, and the a's are the usual Pauli spin 
operators. Throughout  this paper the lattice A will be {1 ..... L }  a. We will 
develop an expansion for the free energy of this system in the ground state 
and intend to analyze its convergence asymptotically as L ~ oe. As a 
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preliminary step we apply a unitary transformation which rotates every site 
about the y axis by ~/2 radians. After this transformation (1) becomes 

HA = --e ~ a~cr~-- Z (a;-- 1) (2) 
( i j )  i 

Since A is completely determined by L, we will designate HA by H L 
hereafter. 

The free energy per site is defined by 

fL(fl) d~J 1 tip In z~(~) (3) 

with 
def 

ZL(/~) = Tr[exp(-C/HL)] (4) 

where the sum is over all configurations of the spins on the lattice. The 
infinite-volume limit of the function fL is of interest here, and we will 
denote the limit (which we will show exists) b y f ~ .  

The theorem which we will prove in this paper follows. 

T h e o r e m  1. For the Hamiltonian given in (1) in dimensions d~> 1, 
for sufficiently small e, there are functions f r  and f ,  which depend on d 
and e such that fL(/~) [defined in (3)] approaches fL as f l ~  ~ ,  and, in 
turn, fL approaches f ~  as L ~ ~ .  There exists a ~ > 0, which depends only 
on d and e, such that the convergence offL is asymptotically given by 

I f ~  - fr l  "~ exp( - ~L) L -d/2 (5) 

as L--* ~ .  The quantity on the left-hand side is asymptotic to that on the 
right-hand side in the sense that there are strictly positive constants p and 
q < co such that the left-hand side is bounded below (respectively, above) 
by p (q) times the right-hand side. 

The existence of the limits fL and f ~  is well known, and can be proved 
by general methods. (2) What is new in this theorem is the asymptotic 
behavior of the approach to the limit. 

2.2. The  First  Expansion 

Using a slight variant of the Trotter product formula, we begin the 
first expansion of ZL: 

1 ~ (a~-  1) 1 + ~ <~> a;a7 (6) ZL(/~)=Jim Tr exp ~ 
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We choose the usual complete set of basis vectors {1~)}, where 
a,  I g t ) = a i [ 7 * )  with ai = _+1 (if a~= +1, the spin at site / i s  "up"; if 
a i = -1 ,  the spin at site i is "down") for each ie  A. By inserting a sum over 
the set of basis vectors between each of the Nfl factors in the product, the 
right-hand side of (6) becomes 

Z l-I (g*tl exp ~ i ( a ~ -  1) 1 + 5  Z cr~a~ Igt,+~,/u)) 
~0,..., ~/~- U/N) t=o  N </j> 

(7) 

with I g*,) aer I ~u0 ). The exponential terms are diagonal in the basis, so we 
now have 

fl--(1/N) { 1 ~  } e ~ ~rX~r~ i ~t+O/N)) 
Z l-I exp ~ ~ [ ~ ( t ) - l ]  < ~ , l  lq-~<ij> 

~t0  , . . . ,  I / t~ _ [I/ 'N) t = 0  

(8) 

where e/(t) is the value of the spin at site i at time t. 
We will denote by S the time axis (=  {0, I/N,..., f l -  I/N}). Each term 

in the sum (8) has a geometrical interpretation in terms of bonds in A x ~. 
The ground state of the unperturbed Hamiltonian has all of the spins in the 
"up" direction. If we consider only those spins in the "down" direction (i.e., 
those not in the ground state), then we can describe the terms in the sum 
by the "paths" of these spins in A x ~. If spin i is out of the ground state 
at time t, then it will appear in (8) with a factor of exp(-2 /N) ,  and we will 
associate the bond from (i, t) to (i, t + l / N )  with that spin. When a ~x~] 
term flips a pair of nearest-neighbor spins, then we will associate with the 
bond connecting the two sites a weight of e /N  in (8). Thus, every term in 
(8) corresponds to a set of bonds in A x S. It is easily seen that each such 
set of bonds has no boundary, or, equivalently, every site must touch an 
even number of these bonds. Bonds parallel to the Z axis we call time 
bonds, while those connecting sites in A we call space bonds. 

We can now write (8) as a sum over sets of bonds in A x S. The sets 
of bonds are partitioned into connected components called contours. As 
mentioned above, contours have no boundary, and thus, under periodic 
boundary conditions of A x~ ,  all contours are closed paths, or loops. 
When we rewrite Zz. as a sum over contours there will be the constraint 
that there can be at most one space bond at each t value. The constraint 
on the sum follows from the following observation: the off-diagonal factors 
in (8) (i.e., those associated with the space bonds) are given by 
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i i f  ~-It = ~-'lt + 1/N 

= if (~,{axa~l~,+~/N)=l fo ras ing le  ( # ) ~ A *  (9) 

otherwise 

where A* indicates the set of bonds of the lattice A. 
We therefore associate to each contour co a weight WL(co) composed 

of a factor of e x p ( - 2 I N )  for every time bond in co, and a factor of e/N for 
every space bond in co. In terms of contours and their weights, (8) is now 
a weighted sum over sets of contours in A x 2: 

ZL(fl) = lim ~ WL(g2 ) (10) 
N ~ o o  va = {,.or ,..., oo, } 

where ~. is a sum over allowed disjoint sets of contours in A x & and 
WL((2) is the product of the weights of the contours in f2. Aside from the 
requirement that all contours have no boundary, the allowed sets of 
contours which occur in the sum are those for which at most one space 
bond exists at each t value. The magnitude of the difference of the sum with 
the constraint (of at most one space bond at each time) and that without 
the constraint vanishes as N increases, (4~ and thus we may replace the 
constrained sum with an unconstrained sum. 

To proceed, we need to show that an expansion exists for the 
logarithm of (10) in the zero-temperature limit. This can be done by the 
application of a result by Kotecky and Preiss, (5) in which they prove that 
there is a convergent polymer expansion if the following condition holds 
for the weights of the polymers WL(co). Let S(co) be the number of space 
bonds in co, and let T(co) be the number  of time bonds in co. In terms of 
(10) the condition which must be satisfied is that for a constant p < I, for 
each contour coo, 

Wc(co)el~ {coo[ (11) 
co :w0  ~ co # . ~  

where Icol = S(co) + T(co)/N. This condition has been proved to hold for the 
model under consideration by Schorr C6~ and Kennedy3 4) The expression for 
Ico[ is chosen for the following reasons. Because every contour is a loop, 
there are an equal number of space bonds and time segments (i.e., connec- 
ted time bonds uninterrupted by space bonds). Because of this, we can 
"transfer" the 1/N factor from each space bond to one of the time segments, 
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allowing us to assign a weight of e to each space bond, and a weight of 
e x p [ - 2 ( l e n g t h ) / N ] / N  to each time segment. 

We therefore have a convergent polymer expansion which can be 
written 

In ZL(fl) = lira ~ (,b(Y1) (12) 
N ~ o o  sr 

where Y1 is a set of connected contours or a polymer, and qi(Y1) is the 
product of the weights of the component contours multiplied by the 
connected part of the potential. If we let 

foo = Jimo~ l i m  f l@lnZc( f i )  

then we must now consider the difference f ~ - - f L ,  where f/. is defined in 
(3). In order to simplify the notation, we will take the limits to be implicit 
where necessary, and refer back to them only when required. Any expres- 
sion for f ~  must fix the location of the polymers, and hence we define the 
corners of a polymer to be the points on the polymer where a time segment 
is connected to a space bond. Any polymer which has nonzero weight in 
the limit has at least four corners, and so if we order the sites of the lattice 
lexicographically, we are able to define (do(Y1) to be the first corner in Y1. 
We write the two quantities in the following form: 

fL = Z /~L~ V~(~) WL(~o,)... WAo~.) (13) 
= { , o ~ . . . , c o . }  

and 

fo~ = ~ Vc(Y1) W(COl)... V/(co.) (14) 
= { col  ,..., co ,  } 
% ( Q ) = o  

Note that the connected parts of the potential in (13) and (14) are not the 
same functions. 

At this point the lattice is still A x ~, but in order to simplify things 
somewhat in the following we will do the calculations as if the fl --* oo limit 
has already been completed. However, since the fl ~ oo limit is done before 
the L ~ oo limit, it is easy to check in the following that the convergence 
of fL to f ~  is unaffected by this change. With that in mind, the difference 
of the two fL and, foo consists of the terms which appear in only one of 
either the infinite volume or the given finite volume. Let ~L be the 
polymers which have nonzero weight in the finite lattice and zero weight in 
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the infinite lattice. Also let 5~ be the polymers which have nonzero weight 
in the infinite lattice and zero weight in the finite lattice. Now 

I f ~ -  fd  = ~ v%(t2) W(t2) (15) 
= {cob...,co,} 

where 

VC(t2)=~V~(t2)6%(o),o if t 2 ~  
~(1/L d) vC(t2) if t 2 e ~ L  

(16) 

and 

g,(t2) = {i~i W(~oi) if t 2e s~  
WL((J)i) i f  t 2  ~ ' ~ L  

(17) 

In order to extract information about the asymptotics of the convergence 
o f fL  to foo, we must be able to estimate the quantity in (15). We will be 
able to calculate the asymptotic behavior of the right-hand side of (15) as 
L -+ 0% and then we will have proved the theorem. 

We next determine which polymers are in the sum in (15). First, 
the polymers which 5r contributes to the sum are those which are not 
valid polymers in the lattice of size L d, but which are valid polymers in 
lattices of all sizes at least L0 d for some L 0 > L .  It is important to note 
that this set of polymers is included in the set of polymers s for which 
diam(HA(t2) ) > L, where HA(t2 ) is the projection of s onto A. Second, the 
only polymers which 2,~ contributes to the sum are those which, in the 
periodic extension of A, are infinite paths (i.e., polymers which wrap 
around A). We will call the polymers which have this property ribbons. 
Note that there are also contours which are ribbons; when we need to 
differentiate between the two we use the terms ribbon polymer or ribbon 
contour. The asymptotic behavior of the sum (15) will be determined by 
those polymers which have the largest weights as L--) 0% and therefore we 
must now estimate the relative weights of the two sets delineated above. 

When s E ~'~ we can find an upper bound for the sum of weights of 
these polymers by finding an upper bound for the sum of weights over the 
polymers whose projection in A has a diameter greater than L. Thus, we 
will use the following bound: 

v~(t2) w(t2) <. F, v~(t2) F[ w(~o,) (18) 
ff2:K2 E ~z~ K2:~O(K2 ) - -  0 i 

Q~DL 

where D L = {(21 diam(HA(t2))>L}.  The right-hand side of the preceding 
can be bounded as follows. Since every polymer in the sum belongs to DL, 

822/73/1-2-23 



352 Pokorny 

there are at least 2L space bonds in every f~. With each of these space 
bonds there is a factor of ~ which appears in the weight of the polymer for 
a total weight of, at most, e 2L. The final bound which we find is 

o( Le -"L) (19) 

where # can be made as large as desired by taking sufficiently small ~. 
When f2 ~ 5YL, the polymer is a ribbon. Let Pi be the winding number 

in the ith direction of a given ribbon. Given the winding numbers of a 
ribbon, it is easy to see that a ribbon has at least L(Iplq + ".. + ]Pd]) space 
bonds. However, if one of the contours in a ribbon polymer is not a ribbon 
itself, then the polymer must have at least 2L([pl] + . . - + [ P a ] )  space 
bonds. The ribbons which include exactly one ribbon contour and have 
only a single IP~[-- 1 and the other p~ equal to zero will be the leading- 
order contributions to the sum (15), while all the other ribbons will have 
higher-order contributions which we will simply bound. Let ~2 be the set 
of ribbon polymers which do not include exactly one ribbon contour or 
which have 52i [p~] >~2. From the discussion above it is clear that these 
ribbons will have at least 2L space bonds. The bound on the sum over 
polymers in ~2 can then be found in a way similar to the bound (19), 
which yields 

V~'(D) [YV(Y2) <. o(~Le-~L) (20) 
f2:Y2 n .-~2 v~ ~Z~ 

2.3. The Second Expansion 

The only terms from (15) which have not yet been considered are 
ribbons in ~ z \ ~ 2 ,  which are those terms contributing to the leading-order 
behavior of the sum. The only polymers in ~L\~2 are those which include 
exactly one ribbon contour which winds around A in only one direction. 
Our next step is to consider the lowest-energy polymers which are in this 
group. We will find that the polymers in this group can be characterized by 
their projections on the single axis in the direction of their sole nonzero 
winding number. Following ref. 1, we will develop a new expansion in a 
single dimension whose asymptotic behavior as L -~ oo can be found. 

The polymers which have not yet been included in either of the 
bounded sums (19) or (20) will have one ribbon contour with IPi[ = 6ij for 
some j. Let N~ be the set of ribbon contours for which [Pil = 6ij. Let Pj(r) 
denote the coordinates of a point in the projection of A onto the hyperplane 
orthogonal to ej, and let rj denote the j t h  coordinate of a point in A. Also 
let (Pj(r), rj, t) denote the full set of coordinates of a point in A x Z. Each 
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of the ribbon contours in ~ goes from (Pj(r), O, t) to (P](r), L, t) for some 
value of Pj(r) and t. We can fix the location of the polymers if we always 
make Pj(r) = 0 and t = 0. Geometrically, a polymer which has one of these 
ribbon contours will appear  as a path with other contours overlapping 
with it (see Fig. 1, which depicts a single ribbon contour only). The lowest 
weight which such a polymer can have occurs when the ribbon contour 
goes straight across the lattice. However, in the quantum mechanical case, 
the time direction is continuous, and there is a zero probability that the 
ribbon does not change its Z value at every lattice site which it touches. 
The typical r ibbon contour will therefore have some nonzero time segment 
at every such lattice site. Thus the lowest-energy polymers must be those 
which have single r ibbon contours whose projections onto A go straight 
across the lattice (i.e., without any back- or sidetracking), and the excita- 
tions are those portions of the contour in which back- or sidetracking 
occurs. Let Hi(f2) be the projection of any polymer s onto the ith axis in 
A (which will be denoted by ei hereafter). Consider a fixed interval X =  
(m, m + 1 ]  in Hi(s If the set H T I ( x ) c ~ f 2  contains more than one space 
bond, then we will say that X is in the set of excitation intervals of f2. 

Let coo ~ (2 be the ~{-r ibbon in the polymer s For any interval X in 
ej, define 

K(X, coo)= ~ -~b(f2) (21) 

where ~b(f2) is the same function defined in (12). Because Hi(Q ) = 2", there 
are at least 2 IX] space bonds in f2, and thus it is easy to see that K(., co o) 
is bounded by 

tA 

JK(X, coo)l ~ ~rx+ exp( - u  IXI) Icoo n H F I(X)I (22) 

i - - -  I 

I I 

' i 

f . . . .  I . . . . .  1 

, 

I J 

I t 

t I I 

I L 1 

I I I 

I I I 

I I 

I I 

I I 
I I 

1_ . . . . .  I 

I 

X 

Fig. 1. A typical ribbon contour in d= 1. The excitations are enclosed by the shaded boxes. 
Because of the periodicity of the lattice, the left and right ends of the ribbon are actually the 
same point. 
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where # > 0 can be made as large as desired by taking e sufficiently small. 
Since K(X, coo) is small, we define k(X, coo) by 

exp K(X, coo) = 1 + k(X, 0%) (23) 

Those elements of coo for which have their projections in the excitation 
intervals of coo we call the excitations of co o , and we denote the excitations 
of coo by E(coo). Let the terms in the sum on the right-hand side of (15) 
which contain exactly one ribbon contour in N{ (for some j )  be denoted 
f ~ .  In terms of these new definitions, f~ t  is 

d 

fL  _ ~ ~ W(coo) H [ l + k ( X ,  coo)] 
j = l  coO e ~ J  X ~ a j  

d 

=Z E w(coo) E Ilk(X,,coo) 
j =  1 r XI,...,3f n i 

d 

= 2 2 E w(coo) 2 H k(x,, coo) 
j =  1 Y c e j  ~oO~,O~J: X1,...,X n i 

Ilj(E(o)O))-- Y 

(24) 

5 ( x ) =  [1 if x = 0  (25) 
l 0 otherwise 

We will soon need to sum the weights of the time segments over all 
lengths. Recall that a time segment has an overall factor of 1/N, and a 
factor of e x p ( - 2 / N )  for each time bond. Thus, 

where the sum o v e r  •1,.--, Xn is over distinct intervals which can overlap, 
and the sum over Y is over sets of disjoint intervals. Note that those parts 
of coo e ~{  which are not excitations consist of only space bonds parallel to 
the ej axis and one time segment for each space bond. Because there are 
equal numbers of time segments and space bonds, we can form a one-to- 
one pairing of each space bond with exactly one of the time segments 
touching it. Let t i be the length of the time segment associated with the ith 
bond not in E(coo). A single excitation of COo is the part of coo in Hfl(Yi)  
for a fixed i. An excitation of coo~ ~{ must have a single space bond 
parallel to ej entering it from the left and a single space bond parallel to 
ej exiting it from the right. For  the ith excitation, denote the coordinates 
projected onto the d-dimensional hyperplane orthogonal to ej of the space 
bond entering the excitation by (ri-, s~- ), and of the space bond exiting the 
excitation by (U+,s,+). For  each excitation interval define ( r , s ~ ) =  
(r~ +, s,. + ) - (r,-, s 7 ). Because of the periodic boundary conditions we have 
the constraint 3(Y.,. r~) = 1 and 6 ( ~  si + Z~ tl) = 1, where 
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i ~  LoO 

1 / - 2 t i [ \  1 1 (U~N2i) 
~ e x p  ~ - - ~ )  = ~ +  2 ~= ~ ~ exp 

= l + 2 [ e x p  ( 2 ) -  1] -1 (26) 

and in the limit N ~  ~ the sum converges to 1. The polymer with the 
lowest weight is a single ribbon without any excitations. Such a polymer 
simply has L space bonds in it (each with a weight of e), and the sum over 
all lengths of its time segments converges to 1, giving it a total weight of 
e L . If we factor the weight of these polymers out of the sum, then we must 
put back in a factor of ~-IYI for every excitation I7, while the weight of Oo 
outside of all excitations cancels the remaining e -~ factors. Now (24) can 
be rewrRten as 

d 

f ~  =eL ~ Z Z E 1-I W,(i) 
j = 1 YI  ,..., Ym co o : X I , . . . ,  X n i 

//j(E(~oo)) = U, Yi 

X ]-] e IrerU(lI/ l(Yg) C~COo) H k(Xh, COo) (27) 
g h 

where the Yi are disjoint intervals (in ej), the Xi are distinct intervals [as 
in (24)], W,(i) is the weight of the time segment associated with the ith 
space bond, and U(-) is the weight of the argument's space bonds only. 
After describing COo in terms of the (ri, si) and ti we get the equation 

fS ,  =eL E E E a r~ 6 s~+ 'i 
j=l YJ,...,rm {(~i,s~)},{t,} 

COO: ( r , s ) , t  X b . . - , X n  i g 
rtj(E(oJ0)) = Or )~ 

• 13 k(X , (28) 
h 

where the sum over COo: (r, s), t means a sum over all c%'s which conform 
to the given (r +, s -+) and t restrictions. The symmetry of the d axes in A 
allows us to replace the sum over the axes in (28) by fixing the value o f j  
and multiplying by d. 

The union of all intervals in the above equation can be partitioned 
into disjoint intervals I~ ..... I,,. The weights of these intervals are now 

~g( I , r , s )=  ~ ~ Hk(X; , c~  1-[ Wt(i)e-1zTJ(E(~~176 (29) 
Xl,...,Xd ~oo j i~Rfl(l) 
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where the sums are over coo and the Xi with Hj(E(coo))w ((Ji X~)= L the 
X~ distinct, coo entering the interval at 0, and exiting the interval at 
(Pj(r), III, s). With this definition, (28) becomes 

f~l =eLd E E E [I m(ti) 
II, . . . ,Im: (r l ,s l ) , . . . , (rm,sm) tl,. . . ,tm i 
d i s j o i n t  

x 6 ( ~ r i )  6(~si+~t~)l~Iql(I~,r~,si) (30) 

We next discuss bounds on I~#(L r, s)[. From (22) we see that each factor 
of k(X, coo) in (29) is no larger than e Ixl e x p ( - #  IXI ) times a term propor- 
tional to the size of that part of co o inside of Hf~(X). Because coo extends 
across a distance of at least Isl in the Z direction, it contributes a factor of 
e x p ( - 2  Isl/N). Of this factor, exp ( - [ s l /N)  can be factored out of the sum, 
and the remaining e x p ( - t s l / N )  is still sufficient to control the sum. The 
number of space bonds which coo contains can be seen to be at least Ir[ 
bonds (where Ir[ is the l I norm of r) perpendicular to ej (since the contour 
must exit the excitation in the correct place), and at least 2(111-~2 tX~l) 
bonds parallel or antiparalM to e s (since I is connected and hence coo must 
be in the excitation wherever there is no X). Thus the number of space bonds 
which co o contributes to the sum is bounded below by 2([IL-~2 IX,-[)+ Irl. 
Therefore we have the bound 

I~(I, r, s)l <<. o ( l e xp  I-([II + lrl ) # -  Is--~lN] ) (31) 

To handle the constraints imposed by periodicity, we use the following 
identity to transform the 6(~i  (re, s i ) )6(Zi  s i+  52i ti) term: 

; ( ? )  - (2z)a_ 1 - , d k l " ' "  -,dka lexp ik .  r s 

x - -  dq exp iq s~ + tl (32) 
2~z _ 

With the above transformation we define the weights in Fourier space by 

~( I ,  k, q ) =  ~ ~ exp(ik �9 r) exp(iqs) ql(I, r, s) (33) 
r s 
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From (31) we get the bound on ~ :  

I~(/, k, q)l ~ N ~ ~ c exp - (llJ + rrl )# - 
r s 

~< O(exp( - I I I  #)) (34) 

Every site not in (ji I in the expression (30) will have a factor of 

1 / - 2  Itl iqt'~ 
W~( i )exp( iq t )= ~ ~ e x p  ~ - - - ~  +-~- )  

t t 

[ ' ' 1 1 1 + e(_ 2 + iq)/N 1 + 
N e ( 2 - -  i q ) / N  _ _  1 

1 +q2/4 
(35) 

Therefore we have (after using the last expression in its limiting form) 

where 

f ~ , = e L d  (2~)a 1 -~ ~ d k l " "  ~dka- l~-~  ~ d q Z l ( k ' q )  (36) 

Z~(k,q)= lira lim ~ (l+q2/4)zil'iJ-cI-[~(Ii, k,q) (37) 
f l  ~ o~ N ~ o o  l t , . . . , l m  : i 

d i s j o i n t  

2.4. Analys is  of  the  Expansion 

The last equation, (37), looks like the partition function of a one- 
dimensional gas of interacting rods. Our next step is to show that the 
logarithm of the partition function of this gas, Z~(k, q), has an expansion. 
We can use the bound from (34), but there is now a factor of (1 + q2/4)lIr 
multiplying each of the qT(Ii, k, q) weights. Since ]q[ ~ re, we can still obtain 
the bound 

I(1 + q2/4)rtl ~(I ,  k, q)l ~< (1 + rc2/4) Izl O ( e x p ( -  IIJ #/2)) (38) 

which is exponentially decreasing in IIJ for large enough # (which can be 
obtained by taking small enough e). Therefore a convergent polymer 
expansion exists for In Zl(k,  q): 

= lim lira 1 + ) 2 / 4  e x p [ L g ( k , q ) + h ( k , q ) ]  Z1(k 'q )  ~ N~oo 

= exp{L[-- ln(1 + q2/4) + g(k, q)] + h(k, q)} (39) 
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where g(k, g) is the free energy per site of the one-dimensional gas, and 
h(k, q) results from terms which go all the way from 0 to L. Using (38), it 
is easy to check that both h and g are uniformly bounded in k, and g is 
bounded by O(e -pL) [for the appropriate p which can be found from 
(38)]. We now must discuss the limits N ~  Go and f i ~  oe. All of the 
bounds which we need in order to show convergence of both expansions 
leading to (39) are uniform in N and fl and the limits can be moved under 
the integrals by application of the Lebesgue dominated convergence 
theorem; that is, we can apply the limits to the quantities g(k, q) and 
h(k, q) before any integration. 

To find the asymptotic behavior o f f ~  1 as L --* o% we need to find the 
lowest-order terms in the g and h. Of course, the terms we are looking for 
are in the g term, considering the bound we have on h. The lowest-order 
contributions to g(k, q) arise from those excitations which have [I[ = 1. 
From that set of excitations, the contours which sidetrack only once have 
the greatest weights. Recall that every space bond has a weight of e; there- 
fore the weights of all contours other than the ones which sidetrack once 
are decreased by a factor of e relative to those which sidetrack only once. 
In d =  1 contours cannot sidetrack, and so the contours with the greatest 
weights are those which backtrack for only one bond and then turn around 
into the "correct" direction again. For d >  1, the contours which sidetrack 
(from the el direction) have the weight 

d 

e(1 + q2/4) ~ exp(ik, ej) 
j = 2  

x f dsl f ds2exp[iq(sl + s2)]exp(-Z [sll)exp(-Z ls21 ) (40) 

After evaluating the above, we find 

d 

e(1 + q2/4)-1 ~ 2 cos(ki) (41) 
i = 2  

The above expression has a maximum at k = 0, q = 0. The expansion of 
[ - l n ( 1  + q2/4) -t- g(k, q)] to orders e, k 2, and q2 is 

d 

- e ( 2 d -  1)/4q 2 - 2 e  ~ ( 1 - k  2) 
i = 2  

Therefore, evaluating the integrals by a standard steepest descent method, 
we find f ~ l ~ L e x p [ 2 ( d  - 1)L] L -el2. Thus the asymptotic behavior of 
If~--fLL is the same, and the proof is complete. 
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3. CORRELATION LENGTH 

Now that we have shown that the ground-state energy per site of the 
Ising model in a strong transverse field on a lattice of size L a converges to 
its infinite-volume value as e x p ( - ~ L ) / L  d/2, we are able to get a result on 
the spin-spin correlation function of a x with only a bit more effort. We will 
show that the correlation function at zero temperature has a correlation 
length equal to the value of ~ in Theorem 1, and the correction to the 
exponential decay is asymptotically given by l d/2. The correlation length 
and correction to the exponential decay of spin-spin correlations in the 
ground state has been found previously by Kennedy. (4~ 

The correlation function which we now wish to consider is / ~ x a s  \ \ 0 l e i / '  
for integer values of / .  This function is given by 

( a x a  x \ =  lira lim Y r [ ~ a T e e  BH]/ZL (42) 0 lei / 
L~oc~ f l ~ o o  

The key to getting the result lies in the relation between the geometrical 
pictures of the expansions for the free energy per site and the correlation 
function. Using the Trotter product formula as before, we obtain the 
geometrical picture of this correlation function. What we find is that the 
spins at the origin and le i are flipped at time 0, which yields a contour 
which goes between those two sites. All other contours will be closed loops 
as in the expansion of the free energy. The existence of expansions for both 
numerator and denominator of (42) follows exactly as in the previous 
proof. Then, after the normalization, we find that terms in the expansion 
consist of a single distinguished contour between (0, 0) and (lei, 0) and 
clusters of closed loops which overlap the distinguished contour. Thus a 
typical term in the expansion will look something like Fig. 2. The existence 

rlk 

1 

: ' I " 
--] r, 

o ~ l ej 

Fig. 2. A typical path in the expansion for the two-point correlation function (d= 1). There 
are excitations along the distinguished path in addition to the two closed-loop excitations 
overlapping the path. 
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of the two limits which we take is also easily established using standard 
results in polymer expansions. 

Recall that the leading-order asymptotic behavior of the free energy per 
site is due to ribbons which wind around the lattice in only one of the direc- 
tions. We were able to fix the direction and the location of the clusters in the 
lattice, For  the correlation function the clusters are fixed by the location of 
the distinguished contour. Therefore, except for the fact that the ribbons 
are closed paths and the distinguished contours are not, the geometrical 
pictures as well as the weights are the same for the two functions. In turn, 
the free energies of the two gases of interacting one-dimensional rods 
(obtained by the second expansions for each function) are similar apart  
from "boundary terms." In fact the infinite-L and infinite-/free eergies per 
site (of the respective functions) are identical. Because the asymptotic 
behavior of both expansions does not depend on the boundary terms, the 
final result for the asymptotic behavior of both expansions is the same. 
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